
OPENBACH, OPEN METROLOGY
TESTING FRAMEWORK

Detailed technical presentation
E. Dubois (CNES), D. Pradas (Viveris Technologies)

1

SUMMARY

2

� How to get/install OpenBACH

� Auditorium presentation

� How to use the web/scripts interface.
� Example: Simple ping

� Scenario “strengths” and scenario builder
� Example: MP-TCP test

� Job development tips

OPENBACH PLATFORM INSTALL

3

Core Controller and Collector install
� Must be installed on Ubuntu 16.04 (64 bits)
� Ansible installation
� Add the Controller, the Collector and the

Auditorium to the SSH "known_hosts" file of the
host from which you install OpenBACH.

� Sources

git clone --recursive https://forge.net4sat.org/openbach/openbach.git

� Install
./openbach_installer.py --controller-ip *ip_address* --controller-name

Openbach-Controller --controller-username *username* --controller-password

password install

OPENBACH PLATFORM INSTALL

4

Agent install
� Requirement: Python 2.7, tested on Ubuntu 14.04 and 16.04.

� For SSH: You have to add the host in the known_hosts list of
the Controller.

� From web interface:

� From scripts:

./install_agent.py *agent_ip* *collector_ip* *username* *password*

name

AUDITORIUM PRESENTATION

5

Auditorium allows to control OpenBACH:

� Create/delete/modify projects/scenarios

� Install/uninstall agents/jobs

� Launch/stop scenarios instances (and check status)

� Launch/stop job instances (and check status)

� List entities/agents/jobs/scenarios and their status

� Etc.

Revue de mi-projet SMILE – 11 février 2016

AUDITORIUM PRESENTATION

6

Two ways to control OpenBACH:

� Via the Web interface (auditorium-web)
� User friendly

� Via the Python scripts (auditorium-scripts)
� More flexibility

Revue de mi-projet SMILE – 11 février 2016

thanks to command line

execution of python scripts

HOW TO USE OPENBACH: WEB INTERFACE

7

� Create project

� Add a job to OpenBACH (on developer tips)

� Install jobs on Agents

� Create scenario

� Launch scenario instance

� Show results (stats)

Watch “how to …” on video screencast

CREATE A PROJECT

8

� New project and description
� Add a network topology
� Associate agents to entities

JOB INSTALL

9

� Deploy a job fping on an Agent

CREATE SCENARIO

10

� New scenario and description
� Add openbach functions allowing to start/stop job instances (and

subscenarios)
� Example: fping

LAUNCH SCENARIO INSTANCE

11

� Start scenario instance
� Visualize status of instance
� Show results/statistics on Grafana
� Show Log messages

HOW TO USE OPENBACH: SCRIPTS INTERFACE

12

� List agents

� Install a job (on correct/wrong agent)

THE « STRENGTHS » OF THE SCENARIO

13

� Able to create dependencies between openbach-functions and job

instances

� “wait for finished”

� “Wait for launch”

� Able to create sub scenarios

� Able to launch jobs with accurate scheduling time

� Able to use if/while functions

� Able to pass arguments to the scenario

� Different ways of creating scenarios � based on JSON (able to export to

Web and Python interfaces)

MP-TCP SCENARIO EXAMPLE

1. http server

2. Enable mptcp 3. Enable mptcp

5. Rate monitoring

(4G)

4. Rate monitoring

(sat)

6. http client

Stop 4, 5Stop 1

10sec

60sec

Server entity Client entityScheduling time

MP-TCP SCENARIO EXAMPLE

15

MP-TCP SUBSCENARIO EXAMPLE

16

MP-TCP SUBSCENARIO EXAMPLE

17

THE SCENARIO BUILDER (PYTHON)

18

� Objectives: Python API that makes the creation of scenarios easier

and programmable.

� “Interface between Python code and JSON scenario definition“

� Exports scenario in JSON

� Use of Python tools and loops/conditions

DATA ACCESS API

19

� Objectives: Python module allowing to access the Collector

database (logs and stats)

� For Post-processing tasks

� A job is able to access the desired data (classified by scenario id, job

instance id, agent name, job name, etc) and process the data.

HOW TO WRITE A JOB

20

� Get your favorite language to do the task you are willing to execute
on an Agent;

� Use collect-agent to store logs and data in the collector;

� collect-agent library is written in C++ but provides C and Python
wrappers, so these languages are favored when writing jobs;

� collect-agent formats messages to an inner daemon (rstats) on the
agent, so manually sending logs and data is still possible (albeit
tedious).

Revue de mi-projet SMILE – 11 février 2016

HOW TO PACKAGE A JOB

21

� Jobs deployment to an Agent is done through Ansible

� Most of Ansible configuration is performed by OpenBACH but you
still have to provide (un)installation instructions by the mean of 2
playbooks: install_<job_name>.yml and uninstall_<job_name>.yml

� Instructions about how to launch a job have to be provided by the
mean of a configuration file (<job_name>.yml): command to launch,
accepted args, metadata…

� Regular Ansible rules apply so the
expected layout of the files is:

Revue de mi-projet SMILE – 11 février 2016

HOW TO ADD A JOB

22

� Aim: send the job’s folder to the controller and register it in the
backend.

� Using the auditorium-scripts: upload the folder somewhere on the
collector and run, from your install machine:
python3 add_job.py <job_name> <uploaded_path>

� Using the Frontend: archive (tar.gz) the content of the folder and
use the administration tools to send it.

Revue de mi-projet SMILE – 11 février 2016

ADDING A JOB FROM THE FRONTEND

23 Revue de mi-projet SMILE – 11 février 2016

QUESTIONS ?

24

Thank you

Revue de mi-projet SMILE – 11 février 2016

25 Revue de mi-projet SMILE – 11 février 2016

2. Enable mptcp 3. Enable mptcp

5. Rate monitoring

(4G)

4. Rate monitoring

(sat)

6. http client

10sec

60sec

Server entity Client entityScheduling time

1. http server

20sec

Subsenario

Stop Subsenario

MP-TCP SCENARIO EXAMPLE

26

� Of1: launch MPTCP-job on client

� Of2 : launch MPTCP-job on server

� Wait for of1 and of2 to be finished

� Of3: launch http_server (job)

� Of4: launch rate_monitoring (job) � measures rate b/s (stat)

� Of5: launch http_client (job) during 60s� measures PLT (stat)

� Wait for http_client to be finished

� Of6: stop job http_server / rate_monitoring

� Wait for http_client to be finished

� Of7: stop MPTCP-job on server/client (to backup initial configuration of system)

